# COTOTAL BLOCK DOMINATION IN GRAPHS

<u>M.H. Muddebihal<sup>\*</sup></u> <u>P.Shekanna<sup>\*\*</sup></u> Shabbir Ahmed\*

#### **ABSTRACT:**

For any graph G(V, E), block graph B(G) is a graph whose set of vertices is the union of the set of blocks of G in which two vertices are adjacent if and only if the corresponding blocks of G are adjacent. A dominating set D of a graph B(G) is a cototal block dominating set if the induced subgraph  $\langle V[B(G)] - D \rangle$  has no isolated vertices. The cototal block domination number  $\gamma_{bct}(G)$  is the minimum cardinality of a co total block dominating set of G. In this paper many bounds on  $\gamma_{bct}$  (G) are obtained interms of elements of G but not the elements of B(G). Also its relation with other domination parameters were established.

Key words: Dominating set/Block graphs/co total block domination

Subject classification number: AMS 05C69, 05C70

<sup>\*</sup> Professor, Department of Mathematics, Gulbarga University, Gulbaarga-585106

<sup>\*\*</sup> Research Scholar, Department of Mathematics, Gulbarga University, Gulbarga-585106.



#### Introduction:

All graphs considered here are simple, finite, nontrivial, undirected, connected without loops or multiple edges. As usual, p and q denote the number of vertices and edges of a graph G. For any undefined term or notation in this paper can be found in *Harary* [2]. A set D of a graph G is a dominating set if every vertex in V - D is adjacent to some vertex in D. The domination number  $\gamma(G)$  of G is the minimum cardinality of a dominating set A dominating set D of a graph G is a cototal dominating set of G. If every  $v \in V - D$  is not an isolated vertex in the induced subgraph  $\langle V - D \rangle$ . The cototal domination number  $\gamma_{ct}(G)$  of G is the minimum cardinality of a co total dominating set. The concept was introduced by Kulli[4]. Now we define cototal block domination in graphs. A dominating set D of B(G) is a cototal dominating set if the induced sub graph  $\langle V[B(G)] - D \rangle$  has no isolated vertices the cototal block domination number  $\gamma_{bct}(G)$  of B(G) is the minimum cardinality of a cototal block domination set. As usual, the minimum degree of a vertex in G is denoted by  $\delta(G)$ . A vertex v is called a cut vertex if removing it from G increases the number of components of G. For any real number x, [x] denotes the smallest integer not less than x. Aset of vertices in a graph G is called an independent set if no two vertices in the same set are adjacent. The vertex independence number  $\beta_0(G)$  is the maximum cardinality of an independent set of vertices. A dominating set D is a total dominating set if the induced subgraph  $\langle D \rangle$  has no isolated vertices. The total domination number  $\gamma_t(G)$  of a graph G is the minimum cardinality of a total dominating set. This concept was introduced by C.J.Cockayne [1]. A dominating set D is a connected dominating set whose induced sub graph (D) is connected. This concept was introduced by E.Sampath Kumar [7]. A dominating set D of a graph G =(V, E) is a non split dominating set if the induced sub graph  $\langle V - D \rangle$  is connected. The nonsplit domination number  $\gamma_{ns}(G)$  of a graph G is the minimum cardinality of a non split dominating set. This concept was introduced by Kulli [5].

In this paper many bounds on  $\gamma_{bct}(G)$  are obtained in terms of elements of *G* but not the elements of *B*(*G*), also its relation with other domination parameter is established.

We need the following Theorems for our further results.

**Theorem A**[3] : A cototal dominating set *D* of *G* is minimal if and only if for a vertex  $v \in D$ , one of the following conditions holds.



i) There exists a vertex  $u \in V - D$  such that  $N(u) \cap D = \{v\}$ 

- ii v is an isolated vertex in  $\langle D \rangle$
- iii) v is an isolated vertx in  $\langle (V D) \cup \{v\} \rangle$

**Theorem B[6]**: If *G* is a graph with no isolated vertices then  $\gamma(G) \leq \frac{p}{2}$ .

**Theorem 1:** For any graph G with n - blocks and  $B(G) \neq K_2$  and  $K_{1,p}$   $p \ge 3$  then

$$\gamma_{bct}(G) \le n-2$$

*Proof* : Suppose B(G) be a block graph of a graph G. Let  $H = \{B_1, B_2, B_3, \dots, B_n\}$  be the blocks of G and  $H_1 = \{b_1, b_2, b_3, \dots, b_n\}$  be the set of vertices of B(G) which corresponds to the blocks of H. Now we consider the following cases.

*case*1: Suppose every cut vertex of *G* lies on atleast three blocks. Let  $D_1 = \{b_i\}$   $1 \le i \le n$  set of cut vertices which are incident to the end blocks of B(G). Again we consider the set  $D_2 = \{b_s\}, 1 \le s \le n \forall b_s \notin N(D_1)$ . since  $\langle V[B(G)] - \{D_1 \cup D_2\} \rangle$  does not have an isolated vertices. Then  $D_1 \cup D_2$  is a minimal cototal dominating set inB(G). *clearly*  $|D_1 \cup D_2| = \gamma_{bct}(G)$ which gives  $\gamma_{bct}(G) \le n - 2$ .

*case*2 : Suppose every cut vertex of *G* lies on atmost two blocks of *G* and atleast one nonend block is adjacent with atleast three blocks. Then B(G) is a tree.Further we consider the two sub cases of *case*2

subcase 2.1 : Assume B(G) is a tree with  $\Delta[B(G)] \ge 3$ . Let  $D_1^{-1} = \{b_i\}, 1 \le i \le n$  be the set of all end vertices in B(G). Suppose  $\exists b_k \in B(G)$  is an end vertex and if the distance from  $b_k$  to the nearest vertex with degree  $\ge 3$  is atleast four, then  $b_k \in D_2$  and  $K = \{b_1, b_2, b_3, \dots, b_s\}$ where  $\forall b_i, 1 \le i \le s$  are the vertices such that the distance between them is 3 with degree  $b_i = 2$ . Then  $b_k \cup K$  gives the minimal block cototal dominating set. If there exists a path less than H, then  $b_k$  and  $N(b_k) \in D_2$ . Hence  $|D_1^{-1} \cup D_2|$  is a minimal block cototal domination set of B(G). Clearly  $|D_1^{-1} \cup D_2| \le n-2$  which gives  $\gamma_{bct}(G) \le n-2$ 

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A. International Journal of Management, IT and Engineering http://www.ijmra.us

### IJM

Volume 4, Issue 7

# <u>ISSN: 2249-0558</u>

subcase2.2 : Assume B(G) is a tree with  $\Delta[B(G)] \leq 2$  then B(G) is a path. Let  $B(G) = P_n: b_1, b_2, b_3, \dots, b_n$  be a path. Now  $D_1 = \{b_1, b_4, \dots, b_{n-2}, b_{n-1}, b_n\}$ . If  $P_n$  consists of 6k number of vertices for  $K = 1,2,3,\dots, m$  then  $D = \{b_1, b_4, \dots, b_{n-2}, b_{n-1}, b_n\}$  be the minimal cototal dominating set of B(G). clearly  $|D| = \gamma_{bct}(G) \leq n-2$ .

If  $P_n$  Consists of other than 6k number of vertices, then the block cototal dominating set

 $D = \{b_1, b_4, b_8, \dots, b_n\}$  .Since each edge is a block in G with n - 1 number. Then B(G) has n - 2 blocks .Clearly D gives the minimal block cototal dominating set and  $n - 2 \ge |D|$  which gives  $\gamma_{bct}(G) \le n - 2$ .

**Theorem 2**: For any graph G,  $B(G) \neq K_2$  or  $K_{1,n}$ ,  $n \geq 3$  then  $\gamma_{bct}(G) \leq \gamma_{cot}(G)$ 

**Proof**: Suppose  $B(G) = K_2$  or  $K_{1,n}$   $n \ge 3$ . Then cototal dominating set dose not exists for B(G). Hence  $B(G) \ne K_2 or K_{1,n}$   $n \ge 3$ . To establish the upperbound for  $\gamma_{bct}(G)$ , we have the following cases.

*case*1: Suppose *G* has atleast one block which is not an edge. Then there exists atleast one block which contains more than one vertex. Let  $V(G) = \{v_1, v_2, v_3, \dots, v_n\}$  and Suppose,  $\exists B_i$ blocks in  $G, i \ge 2$  with more than two vertices. Let  $D^1 \subset V(G)$  such that  $D^1 = \{V_j\}, 1 \le j \le n$ be a cototal dominating set of *G*. Suppose there exists some vertices of  $D^1$  with  $j \ge 3 \in B_i$  in *G*. Hence  $|D^1| = \gamma_{cot}(G)$ . Let  $H = \{B_1, B_2, B_3, \dots, B_n\}$  be the set of blocks of *G*. Then there exists  $H^1 = \{b_1, b_2, b_3, \dots, b_n\}$  be the set of vertices in B(G) corresponding to the blocks of *H*. Assume some  $B_i \in H$  have more than two vertices in *G*. Then the corresponding  $b_i \in H^1$  have a single-tone in  $H^1$ . Now we consider  $D \subseteq H^1$  which is a cototal dominating set of B(G). If all  $b_i's$  belongs to D, then  $|D| = \gamma_{bct}(G) \le |D^1|$  which gives  $\gamma_{bct}(G) \le \gamma_{cot}(G)$ .

*case*2: Suppose each block of *G* is an edge. Then *G* is a tree with  $V(G) = \{v_1, v_2, v_3, \dots, v_p\}$ . Let  $B_1 = \{v_i\}, 1 \le i \le p$  such that  $B_1 \subseteq V(G)$  and every  $v_i$  is an end vertex,  $B_2 = \{v_j\}$ ,

 $B_2 \subseteq V(G)$  each  $v_j$  is a vertex whose neighbour form an edge in a cototal dominating set of *G*. Now  $D_1 = B_1 \cup B_2$  is a cototal dominating set of *G*. Then  $|D_1| = \gamma_{cot}(G)$ . Suppose

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A. International Journal of Management, IT and Engineering http://www.ijmra.us

# ISSN: 2249-0558

 $H = \{B_1, B_2, B_3, \dots, B_n\}$  be the blocks of *G*. Then  $H^1 = \{b_1, b_2, b_3, \dots, b_n\}$  be the corresponding block vertices in B(G). we consider the non end blocks of *G* which are cut vertices in B(G). Let  $H_1 = \{B_k\}$  be the set of all non end blocks of *G* which gives  $H_1^{1} = \{b_K\}$  be a set of cut vertices in B(G). Hence  $H_1^{1}$  is a  $\gamma_{bct} - set$ ,  $H_1^{1} = \gamma_{bct}(G)$  clearly  $|H_1^{1}| \le |D_1|$  which gives  $\gamma_{bct}(G) \le \gamma_{cot}(G)$ 

**Theorem 3**: For any (p,q)graph G, with m end blocks,  $B(G) \neq K_2$  or  $K_{1,n} n \geq 3$ 

then  $\gamma_{bct}(G) \leq p - m$ .

*Proof* : Suppose B(G) is a complete graph  $K_2$  or  $K_{1,n}$ ,  $n \ge 3$ , by definition of cototal block domination the result does not exists. Hence  $B(G) \ne K_2$  and  $K_{1,n}$ ,  $n \ge 3$ .

For establishing upper bound to  $\gamma_{bct}(G)$ . Suppose  $S = \{B_1, B_2, B_3, \dots, B_n\}$  be the blocks of G and  $M = \{b_1, b_2, b_3, \dots, b_n\}$  be the block vertices in B(G) corresponding to the blocks of G. Now  $M_1 = \{b_1, b_2, b_3, \dots, b_m\}$  1  $\leq m \leq n, M_1 \subset M$  be the set of all end vertices in B(G). Let  $J = \{b_1, b_2, b_3, \dots, b_s\}$  be the set of all cut vertices in B(G) and consider  $J_1 \subseteq J$  such that  $J_1 \neq \emptyset$ . Now  $\langle M[B(G)] - (M_1 \cup J_1) \rangle$  has no isolated vertex which gives a co-total block dominating set in B(G). Hence  $|M_1 \cup J_1| = \gamma_{bct}(G)$ . Clearly  $|M_1 \cup J_1| \leq |P| - |m|$  which gives  $\gamma_{bct}(G) \leq P - m$ .

Suppose,  $J_1 = \emptyset$  and every non end vertex has atleast two vertices which are adjacent with other cut vertices. Then  $\langle M[B(G)] - M_1 \rangle$  has no isolates which gives a cototal block dominating set. Hence  $|M_1| = \gamma_{bct}(G)$ . Clearly  $|M_1| \le |P| - |m|$  and is  $\gamma_{bct}(G) \le P - m$ .

**Theorem 4**: For any graph G with  $B(G) \neq K_2$  and  $K_{1,n}$ ,  $n \geq 3$  then  $\gamma_{bct}(G) \leq P - \delta(G) - 2$ 

*Proof*: Suppose B(G) be a block graph of a graph *G*.Let  $H = \{B_1, B_2, B_3, \dots, B_n\}$  be the set of all blocks in *G* and  $H^1 = \{b_1, b_2, b_3, \dots, b_n\}$  be the vertices of B(G) corresponding to the blocks of *H*. Let *v* be the vertex of minimum degree  $\delta(G)$  such that  $1 \le \delta(G) \le P - 1$ . we have the following cases.

case1 : Suppose  $\delta(G) = 1$  we consider the following subcases of case1.

*subcase*1.1: Assume that each block is an edge then q = p - 1 which gives n = p - 1 or

## n-2 = p-3 by Theorem 1, $\gamma_{bct}(G) = p - \delta(G) - 2$ .

*subcase*1.2: Assume that there exists atleast one block which is not an edge. Then n $Which gives <math>n - 2 . By Theorem 1, <math>\gamma_{bct}(G) .$ 

On combining these two subcases, we have  $\gamma_{bct}(G) \leq p - \delta(G) - 2$ .

case2: Suppose  $\delta(G) \ge 2$ . Then each block is not an edge. If *G* contains at least n - blocks and each block consists of at least three vertices, then *G* contains at least 3n vertices. Therefore

 $\frac{p-\delta(G)-2 \ge 3n-2 \ge n-2 \ge \gamma_{bct}(G). Hence \gamma_{bct}(G) \le p-\delta(G)-2.$ 

**Theorem 5**: For any graph G(p,q),  $B(G) \neq K_2$  and  $K_{1,n}$ ,  $n \geq 3$  then  $\gamma_{bct}(G) \leq \left\lceil \frac{p}{2} \right\rceil$ 

**Proof**: Suppose B(G) is a complete graph  $K_2$  or  $K_{1,n}$ ,  $n \ge 3$ . Then by definition cototal block domination does not exists. Hence  $B(G) \ne K_2$  and  $K_{1,n}$ ,  $n \ge 3$ .

For establishing upperbound to  $\gamma_{bct}$  , we have the following cases.

*case* 1: Suppose each block of *G* is an edge. Then *G* is a tree. Let  $S = \{B_1, B_2, B_3, \dots, B_n\}$  be the blocks of *G* and  $M = \{b_1, b_2, b_3, \dots, b_n\}$  be the block vertices in B(G) corresponding to the blocks  $B_1, B_2, B_3, \dots, B_n$  of *S*. Let  $S_1 = \{B_i\}, 1 \le i \le n$  be the set of all nonend blocks in*G* and are cut vertices in B(G). Again we consider a subset  $S_2 = \{B_j\}, 1 \le j \le n$  of *S* such that the set  $\{B_j\}$  is a set of all end blocks in *G*. Let  $M_1 = \{b_i\}$  be the set of all block vertices with respect to  $S_1$ , which are cut vertices in B(G) and  $M_2 = \{B_j\}$  be the set of all non cut vertices corresponding to the set  $S_2$  in B(G). Let  $M_1^{-1} \subseteq M_1$  and  $M_2^{-1} \subseteq M_2$ . Now V[B(G)] = $S, \forall v_i \in S - \{M_1^{-1} \cup M_2^{-1}\}$  has at least degree one. Then  $\langle S - \{M_1^{-1} \cup M_2^{-1}\} \rangle$  has no isolates. Hence  $|M_1^{-1} \cup M_2^{-1}| = \gamma_{bct}$ . But  $\gamma_{bct} \le min\{|M_1^{-1} \cup M_2^{-1}|, |S - (M_1^{-1} \cup M_2^{-1})|\}$  by Theorem (B)  $\gamma_{bct}(G) \le \left[\frac{p}{2}\right]$ 

*case2*: Suppose *G* has atleast one block which is not an edge. Let  $S = \{B_1, B_2, B_3, \dots, B_n\}$ 

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A. International Journal of Management, IT and Engineering http://www.ijmra.us

# IJMIE

be the blocks of *G* and  $M = \{b_1, b_2, b_3, \dots, b_n\}$  be the block vertices in B(G) corresponding to the blocks  $B_1, B_2, B_3, \dots, B_n$  of *S*. Assume some  $B_i \in S$  have more than two vertices in *G*. Then there exists atleast one block  $B_{i,1} \leq i \leq n$  such that  $V[B_i] \geq 2$ . Let  $M_1$  be a set of all cut vertices,  $M_2$  is the set of all non cut vertices in B(G) such that  $M_1, M_2 \subseteq M$ . Now we consider  $M_1^{-1} \subseteq M_1$ . Suppose  $M_2 = \emptyset$  in B(G). Then  $\langle V[B(G)] - \{M_1^{-1}\} \rangle$  has no isolate and

ISSN: 2249-0558

 $|M_1^1| = \gamma_{bct}(G)$ . Suppose  $M_2 \neq \emptyset$  in B(G). Then there exist a subset  $M_2^1 \subseteq M_2$  such that

Volume 4, Issue 7

 $\langle V[B(G)] - \{(M_1^1 \cup M_2^1)\}\rangle$  gives no isolate. Clearly  $|(M_1^1 \cup M_2^1)| = \gamma_{bct}(G)$ . Since as in case 1, we have  $|M_1^1|$  or  $|(M_1^1 \cup M_2^1)| \le \left|\frac{V[B(G)]}{2}\right|$  which gives  $\gamma_{bct}(G) \le \left[\frac{p}{2}\right]$ .

**Theorem 6**: For any graph G,  $B(G) \neq K_2$  and  $K_{1,n}$ ,  $n \ge 3$  then  $\gamma_{bct}(G) \le S$ , where S is the number of cut vertices in G.

**Proof**: Suppose B(G) be a block graph of a graph G. If B(G) is either  $K_{1,n}$  or a complete graph  $K_2$ . Then by definition, cototal block domination does not exists. Hence  $B(G) \neq K_2$  and

 $K_{1,n}, n \ge 3.$ 

Suppose  $M = \{b_1, b_2, b_3, \dots, b_n\}$  be the block vertices in B(G) corresponding to the blocks of G. Let  $M_1 = \{b_1, b_2, b_3, \dots, b_j\} \subseteq M$  where  $1 \le j \le n$  be the set of all end vertices in B(G). Also  $M_2 = \{b_1, b_2, b_3, \dots, b_i\} \subset M$ ,  $1 \le i \le n$  be the set of all cut vertices in B(G). Further we consider a set  $M_3 = \{b_1, b_2, b_3, \dots, b_s\}$   $1 \le s \le i$  such that  $M_3 \subset M_2$ .

Now  $\langle M[B(G)] - (M_1 \cup M_3) \rangle$  has no isolated vertices which gives a co-total block domination in B(G). Hence  $|M_1 \cup M_3| = \gamma_{bct}(G)$ . Suppose every non end block has at least two blocks which are adjacent with different cut vertices and is denoted these cut vertices by a set *S*. Then by the definition of  $B(G), |S| \ge |M_1 \cup M_3|$  which gives  $\gamma_{bct}(G) \le S$ .

On observing all the results connected to cototal block domination, we have easily obtain the following

Corollary 1: For a tree  $T, B(G) \neq K_2$  and  $K_{1,n}, n \geq 3$  then  $p - q \leq \gamma_{bct}(G)$ 

Corollary 2: For any graph  $G, B(G) \neq K_2$  and  $K_{1,n}, n \geq 3$  then  $\gamma_{bct}(G) = \gamma(G)$ 

<u>ISSN: 2249-0558</u>

if and only if G is a star.

**Theorem 7**: For any graph  $G, B(G) \neq K_2 \text{ or } K_{1,n}$ ,  $n \geq 3$  then  $\gamma_{bct}(G) \leq P - \gamma_t(G)$ 

*Proof*: By the definition of cototal domination,  $B(G) \neq K_2$  or  $K_{1,n}n \geq 3$ . we consider the following cases.

case 1 : Assume G is a tree and let  $S = \{B_1, B_2, B_3, \dots, B_n\}$  be the blocks of G and  $M = \{b_1, b_2, b_3, \dots, b_n\}$  be the block vertices in B(G) corresponding to blocks  $B_1, B_2, B_3, \dots, B_n$  of S. Let  $\{B_i\} \subseteq S$  such that all  $B_i$ 's are non-end blocks of G. Then  $\{b_i\} \subseteq V[B(G)]$  which are cut vertices corresponding the set $\{B_i\}$ . Since each block is complete in B(G). Then every vertex of  $V[B(G)] - \{b_i\}$  is adjacent to at least one vertex of  $\{b_i\}$ . Clearly  $|b_i| = \gamma_{bct}(G)$ . Since for a tree T, P = q + 1 then  $P = B_n + 1$ . Let V be the set of vertices in G and  $V_1 \subset V$  which are non end vertices in G. Again consider a subset  $V_2 \subset V_1$  which are also non end vertices of G. If  $V_1 - V_2 = D$  has no isolated vertex. Then D is a total dominating set, which gives  $\gamma_t(G) = |D|$ . Hence  $|b_i| \leq P - |D|$  which gives  $\gamma_{bct}(G) \leq P - \gamma_t(G)$ .

*case*2: Suppose *G* is not a tree. Then there exists at least one block which is not an edge. Let  $B_1, B_2, B_3, \dots, B_n$  be the blocks of *G* and  $b_1, b_2, b_3, \dots, b_n$  be the corresponding block vertices in B(G). Since each block of B(G) is a complete and if a vertex  $v \in D$  there exists a vertex  $u \in V[B(G)] - D$  such that  $N(u) \cap D = \{v\}$  is a minimal cototal dominating set *D* of B(G). Then |D| gives cototal block domination number  $|D| = \gamma_{bct}(G)in B(G)$ . Let V(G) be the set of vertices of *G*. Let  $D_1 \subset V(G)$  such that  $V(G) - D_1$  gives a disconnected graph and every vertex of  $V(G) - D_1$  is adjacent to at least one vertex of  $D_1$ . Then  $D_1$  is a total dominating set. Hence  $|D_1| = \gamma_t(G)$  is the minimum total dominating set. Clearly  $|D| \leq P - |D_1|$  which gives  $\gamma_{bct}(G) \leq P - \gamma_t(G)$ .

**Theorem 8**: For any graph  $G, B(G) \neq K_2$  and  $K_{1,n}, n \geq 3$  then  $\gamma_{bct}(G) \leq \gamma_t(G) + \beta_0(G) - 3$ 

*Proof*: From the definition of co total domination  $B(G) \neq K_2$  and  $K_{1,n}$ ,  $n \ge 3$ . Suppose  $S = \{B_1, B_2, B_3, \dots, B_n\}$  be the blocks of G. Then  $M = \{b_1, b_2, b_3, \dots, b_n\}$  be the

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A. International Journal of Management, IT and Engineering http://www.ijmra.us

### JM

Volume 4, Issue 7

corresponding block vertices in B(G) with respect to the set S. Let  $H = \{v_1, v_2, v_3, \dots, v_n\}$  be the set of vertices in G, V(G) = H. we have the following cases.

ISSN: 2249-05

*case* 1: Suppose *G* is acyclic. Let  $H_1 = \{v_1, v_2, v_3, \dots, v_i\}, 1 \le i \le n, H_1 \subset H$  such that  $\forall v_i \in H_1$  is an end vertex in *G*. Then,  $H_2 \subseteq H$ , where  $\forall v_j \in H_2$  are at a distance at least two from each vertex  $v_i \in H_1$ . Then  $|H_1 \cup H_2| = \beta_0$ .

Let  $J_1 = \{v_1, v_2, v_3, \dots, v_i\}, 1 \le i \le n$  are non end vertices in *G*. Suppose  $J_1^1 \subset J_1, \forall v_j \in J_1^1$  are adjacent to atleast one vertex of  $J_1$ . The induced sub graph  $D = \langle J_1 - J_1^1 \rangle$  has no isolated vertex which is minimal. Then  $|D| = \gamma_t(G)$ .

Let  $D_1$  be a block cototal dominating set in B(G). If a vertex  $v \in D_1$  then there exists a vertex  $u \in V[B(G)] - D_1$  such that  $N(U) \cap D_1 = \{v\}$  is an isolated vertex which gives a minimal cototal dominating set. Clearly  $|D_1| = \gamma_{bct}$  which gives  $|D_1| \le |D| + |H_1 \cup H_2| - 3$ .

Hence  $\gamma_{bct}(G) \leq \gamma_t(G) + \beta_0(G) - 3$ .

*case* 2:Suppose *G* is cyclic there exists atleast one block which is cyclic or contains a cycle in *G*. Let  $H_1 = \{v_1, v_2, v_3, \dots, v_i\}, 1 \le i \le n, H_1 \subset H$  and  $H_2 = \{v_1, v_2, v_3, \dots, v_s\}, 1 \le s \le n, H_2 \subset H$ . Since  $H_1 \cap H_2 = \emptyset$ , then for every vertex in  $H_1$  and  $H_2$  which are incident to exactly one vertex in *H*. Therefore  $H_1 \cup H_2$  is a independent set in *G* which gives  $|H_1 \cup H_2| = \beta_0(G)$ .

Let  $U \subset V(G) = H$ ,  $\forall v_i \in U$  is a cut vertex in G and  $U_1 \subset H$  such that  $\forall v_i \in U_1$  which are adjacent to atleast one vertex in U such that  $U \cap U_1 = \emptyset$ . Then  $\langle D_2 \rangle = U \cap U_1$  exists which have no isolated vertex, defines total dominating set which gives  $|D_2|$  as minimum total dominating set.Clearly  $|D_2| = \gamma_t(G)$ 

Let  $M_1 \subseteq M$ ,  $\forall v_s \in M_1$  is an end vertex in B(G), also  $M_2 \subseteq M \forall v_j \in M_2$  are cut vertices which are adjacent to atleast one vertex in  $v_s \in M_1$  such that  $M_1 \cup M_2$  defines co total dominating set and gives  $|M_1 \cup M_2| = |D_3| = \gamma_{bct}(G)$ .

Hence  $|D_3| \le |D_2| + |H_1 \cup H_2| - 3$  which implies  $\gamma_{bct}(G) \le \gamma_t(G) + \beta_0(G) - 3$ .

**Theorem 9**: For any graph G ,  $B(G) \neq K_2$  and  $K_{1,n}$  ,  $n \ge 3$  then  $\gamma_{bct}(G) \le \gamma_c(G)$ .

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A. International Journal of Management, IT and Engineering http://www.ijmra.us

*Proof* : For cototal domination, we consider the graphs with the property  $B(G) \neq K_2$  and  $K_{1,n}$ ,  $n \geq 3$ .

We consider the following cases

*case*1: Suppose each block is an edge in *G*.Let  $V(G) = \{v_1, v_2, v_3, \dots, v_n\}$  and  $V_1(G) = \{v_1, v_2, v_3, \dots, v_n\}$  where  $1 \le i \le n$  where  $V_1(G) \subset V(G)$  for every  $v_i$  is an end vertex in *G*. The minimal connected dominating set is given by  $\langle V(G) - V_1(G) \rangle$ .Hence  $|V(G) - V_1(G)| = \gamma_c(G)$ .

Let  $M = \{b_1, b_2, b_3, \dots, b_n\}$  be the block vertices in B(G) corresponding the blocks

 $S = \{B_1, B_2, B_3, \dots, B_n\}$  since each block of G gives end vertices in B(G). Then  $M_1 = \{b_i\}, 1 \le i \le n, M_1 \subset M$  in which every  $b_i$  is an end vertex. Suppose  $M_1^{-1} = \{b_j\}, 1 \le j \le n, M_1^{-1} \subset M$  every  $b_j$  is a cut vertex in B(G). Let  $M_2 \subset M_1^{-1}$  and  $\{M - \{M_2 \cup M_1\}\}$  has no isolated vertex. Then  $|M_2 \cup M_1| = \gamma_{bct}(G)$ . Clearly  $|M_2 \cup M_1| \le |V(G) - V_1(G)|$  which

gives  $\gamma_{bct}(G) \leq \gamma_c(G)$ .

*case* 2 : Suppose there exists at least one block which is not an edge .Let  $K = \{B_1, B_2, B_3, \dots, B_i\}$  be the sub set of blocks,  $\forall B_i \in K$  has at least three vertices. Then the cardinality of S will increase. But in case of B(G) each block becomes a vertex in B(G). Let  $M_1$  be the minimal dominating set of B(G), such that  $\langle M - M_1 \rangle$  has no isolates. Hence

 $|M_1| = \gamma_{bct}(G)$ . Since  $V[B(G)] \subset V(G)$ . We consider a set  $D = \{v_1, v_2, v_3, \dots, v_n\} \subset V(G)$ such that  $\langle D \rangle$  is connected with minimal cardinality. Hence  $|D| = \gamma_c(G)$ . Clearl  $|M_1| \leq |D|$  which gives  $\gamma_{bct}(G) \leq \gamma_c(G)$ .

**Theorem 10**: For any graph  $G, B(G) \neq K_2$  and  $K_{1,n}$ ,  $n \geq 3$  then  $\gamma_{bct}(G) \leq \gamma_{ns}(G)$ 

*Proof* : For block cototal domination, we consider the graphs with the property such that  $B(G) \neq K_2$  and  $K_{1,n}$   $n \geq 3$ . Let  $V(G) = \{v_1, v_2, v_3, \dots, v_n\}$  and D is a dominating set of *G*. *If a vertex*  $v \in D$  there exists a vertex  $u \in V(G) - D$  such that  $N(U) \cap D = \{v\}$  gives minimum non split dominating set such that  $|D| = \gamma_{ns}(G)$  we have the following cases.

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A. International Journal of Management, IT and Engineering http://www.ijmra.us

## IJM

*case*1 : Suppose each block of *G* is an edge. Then in B(G) each block is complete. Let  $M = \{b_1, b_2, b_3, \dots, b_n\}$  be a set of vertices in B(G) which corresponds to the blocks  $B_1, B_2, B_3, \dots, B_n$  of *G*. Let  $M_1 = \{b_1, b_2, b_3, \dots, b_i\}, 1 \le i \le n, M_1 \subset M$  be a dominating set in B(G) which are adjacent to atleast one vertex in  $V[B(G)] - M_1$ . Then

Volume 4, Issue 7

ISSN: 2249-0558

 $\langle M - M_1 \rangle$  has no isolated vertex, gives cototal domination set. Clearly  $|M - M_1| = \gamma_{bct}(G)$ . Hence  $|M - M_1| \le |D|$  which gives  $\gamma_{bct}(G) \le \gamma_{ns}(G)$ .

*case*2 : Suppose each block of G is not an edge. Then G is not a tree. Hence each block contains at least three vertices in G. Let  $M = \{b_1, b_2, b_3, \dots, b_n\}$  be the block vertices in (G). Suppose  $J_1 = \{b_1, b_2, b_3, \dots, b_i\}, 1 \le i \le n, J_1 \subset M$  which are end vertices in B(G). Let  $J_2 = \{b_j\}, 1 \le b_j \le n, J_2 \subset M$ . Every  $b_j$  is a cut vertex in B(G). Suppose

 $J_3 = \{b_s\}, 1 \le s \le n, J_3 \subset J_2$ . Clearly  $\langle J_3 \cup J_1 \rangle$  is a cototal dominating set. Then  $|J_3 \cup J_1| = \gamma_{bct}(G)$ . since at least one block of *G* contains atleast three vertices. Then cardinality of  $\gamma_{ns} - set$  will increase. Hence one can easily verify that  $|J_3 \cup J_1| \le |D|$  which gives

 $\gamma_{bct}(G) \leq \gamma_{ns}(G) \ .$ 

**Theorem 11**: For any graph G,  $B(G) \neq K_2$  and  $K_{1,n}$ ,  $n \geq 3$  then  $\gamma_{bct}(G) + \gamma_{cot}(G) \leq P$ .

*Proof* : Suppose B(G) is a complete graph, by definition cototal domination  $B(G) \neq K_2$  or

$$K_{1,n} \ n \ge 3$$

Let  $S = \{B_1, B_2, B_3, \dots, B_n\}$  be the set of blocks of G. Then  $M = \{b_1, b_2, b_3, \dots, b_n\}$ be the corresponding block vertices in B(G). Let  $M_1 = \{b_1, b_2, b_3, \dots, b_i\}, 1 \le i \le n$ ,

 $M_1 \subset M$  are the end vertices in B(G). Let  $M_2 = \{b_1, b_2, b_3, \dots, b_j\}, 1 \le j \le n, M_2 \subset M$ which are non end vertices in B(G). Again  $M_3 = \{b_1, b_2, b_3, \dots, b_s\}, 1 \le s \le j$  such that  $M_3 \subset M_2$ . Then  $\langle M - \{M_2 \cup M_3\} \rangle$  has no isolates. Hence  $|M_2 \cup M_3| = \gamma_{bct}(G)$ .

Let  $V(G) = \{v_1, v_2, v_3, \dots, v_p\}, H = \{v_1, v_2, v_3, \dots, v_i\}, 1 \le i \le p$  be a subset of V(G)which are end vertices in G. Let  $J = \{v_1, v_2, v_3, \dots, v_j\} \subseteq V(G)$  with  $1 \le j \le p$ 

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A. International Journal of Management, IT and Engineering http://www.ijmra.us

\_\_\_\_\_

ISSN: 2249-0558

such that  $\forall v_j \in J$ ,  $N(v_i) \cap N(v_j) = \emptyset$ , then  $\langle V(G) - \{H \cup J\}\rangle$  has no isolates. Thus

 $|H \cup J| = \gamma_{cot}(G)$ . Now  $|M_2 \cup M_3| + |H \cup J| \le |V(G)|$ , which gives  $\gamma_{bct}(G) + \gamma_{cot}(G) \le P$ .

**Theorem 12**: If v be an end vertex of B(G), then v is in every  $\gamma_{bct} - set$ . If  $B(G) \neq K_2$ , and  $K_{1,n}$ ,  $n \geq 3$ .

*Proof*: For cototal domination, we consider the graphs with the property such that  $B(G) \neq K_2$ , and  $K_{1,n}$ ,  $n \geq 3$ .

Let  $D = \{v_1, v_2, v_3, \dots, v_n\} \subseteq V[B(G)]$  be the minimal cototal block dominating set of G. suppose there exists a vertex set  $D^{-1} \subseteq V[B(G)] - D$  be the  $\gamma_{bct} - set$  of G. Assume there exists an end vertex  $v \in V[B(G)], v \in D^{-1}$ . Now consider any two vertices u and w such that

 $u, w \notin D^{-1}$ . Since  $v \in D^{-1}, v$  is in every u - w path in B(G). Further, since deg(v) = 1

where  $v \in V[B(G)]$  it follows that the set  $D^1 = (D^{-1} - \{u, w\}) \cup \{v\}$  is also a minimal cototal dominating set of B(G). Clearly  $|D^1| = |D^{-1}| = 1$ , a contradiction to the fact that  $D^{-1}$  is also a  $\gamma_{bct}$  – set of G. Hence  $u \in D^{-1}$  and v is in every  $\gamma_{bct}$  – set of G.

**Theorem 13**: For any connected graph *G* with  $n - blocks \ \overline{B(G)} \neq K_2 \text{ or } K_{1,n} \text{ and } n \ge 3$ then  $\gamma_{ct} \left[ \overline{B(G)} \right] \le n - 2$ 

*Proof*: From the definition of co total domination  $\overline{B(G)} \neq K_2$  or  $K_{1,n}$  and  $n \ge 3$ . Suppose  $S = \{B_1, B_2, B_3, \dots, B_n\}$  be the blocks of G. Then  $M = \{b_1, b_2, b_3, \dots, B_n\}$  be the corresponding block vertices in B(G) and  $\overline{B(G)}$  with respect to the set S. Let  $M_1 = \{b_1, b_2, b_3, \dots, B_i\}, 1 \le i \le n, M_1 \subset M$  for all  $b_i \in M_1$  which are end vertices in  $\overline{B(G)}$ . Again

$$\begin{split} M_2 &= \{b_1, b_2, b_3, \dots, b_s\}, 1 \leq s \leq n, M_2 \subset M \text{ which are non end vertices in } \overline{B(G)} \text{ .} & \text{Also} \\ M_3 &= \{b_1, b_2, b_3, \dots, b_j\}, 1 \leq j \leq s, M_3 \subset M_2 \text{ such that } \forall b_j \in M_3 \text{ which are also non end} \\ \text{vertices in } \overline{B(G)} \text{ which are adjacent to atleast one non end vertex in } \overline{B(G)}. & \text{The induced sub} \\ \text{graph } \langle M - (M_1 \cup M_3) \rangle \text{ has no isolated vertices. Then } |M_1 \cup M_3| = \gamma_{ct} \left[ \overline{B(G)} \right]. & \text{Suppose} \end{split}$$

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A. International Journal of Management, IT and Engineering http://www.ijmra.us



 $M_1 = \emptyset$  then  $|M_1 \cup \emptyset|$  has no isolated vertices which gives minimum co total domination. Clearly  $\gamma_{ct} \left[\overline{B(G)}\right] \le n-2$ .

Further we developed the following theorem of Nordhaus- Gaddum type- Results.

**Theorem 14**: If *G* and  $\overline{G}$  are connected graph, B(G) and  $\overline{B(G)} \neq K_2$  or  $K_{1,n}$  and  $n \ge 3$ then *i*)  $\gamma_{ct}[B(G)] + \gamma_{ct}[\overline{B(G)}] \le 2(n-2)$ 

*ii*)  $\gamma_{ct}[B(G)] \cdot \gamma_{ct}[\overline{B(G)}] \le (n-2)^2$ 

**Proof** : From *Theorem* (1) and *Theorem* (13) the above results follows.

References:

- 1. C.J. Cockayna, R.M.Dawes and S.T. Hedetniemi, Total domination in graphs, Networks, 10(1980) 211-219.
- 2. F.Harary, Graph theory, Adition\_wesley, Reading mass, (1969).
- 3. T.W.Haynes, S.T.Hedetniemi and P.G. Slater, Fundamentals of domination in graphs, Marcel Dekker, Inc, New York (1998)
- V.R.Kulli, B.Janakiram and R.R. Iyer, the co total domination number of a graph, J.Discrete
  Mathematical sciences and cryptography 2 (1999) 179-184.
- 5. V.R. Kulli and B.Janakiram, the non split domination number of a graph. Indian J.Pure Appl.math, 31 (2000) 545 -550.
- 6. O.Ore, Theory of graphs, Amer. Math. Soc. Colloq.publ., 38, providence, (1962).
- 7. E.Sampath Kumar and H.B.Walikar, The connected domination number of graphs,

J.Math.phys. sci., 13 (1979) 607-613.